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Abstract 16 

The Madden-Julian Oscillation (MJO)/Boreal Summer Intraseasonal Oscillation (BSISO) has been 17 

considered an important climate mode of variability on subseasonal timescales for East Asian 18 

summer.  However, it is unclear how well the MJO/BSISO indices would serve as guidance for 19 

subseasonal forecasts.  Using a probabilistic forecast model determined through multiple linear 20 

regression (MLR) with MJO, ENSO, and long-term trend as predictors, we examine lagged 21 

impacts of each predictor on East Asia extended summer (May-October) climate from 1982 to 22 

2015.  The forecast skills of surface air temperature (T2m) contributed by each predictor is 23 

evaluated for lead times out to five weeks.  We also provide a systematic evaluation of three 24 

commonly used, real-time MJO/BSISO indices in the context of lagged temperature impacts over 25 

East Asia.   26 

 27 

It is found that the influence of the trend provides substantial summertime skill over broad 28 

regions of East Asia on subseasonal timescales.  In contrast, the MJO influence shows regional as 29 

well as phase dependence outside the tropical band of the main action centers of the MJO 30 

convective anomalies.  All three MJO/BSISO indices generate forecasts that yield high skill scores 31 

for week 1 forecasts.  For some initial phases of the MJO/BSISO, skill reemerges over some 32 

regions for lead times of 3-5 weeks.  This emergence indicates the existence of windows of 33 

opportunity for skillful subseasonal forecasts over East Asia in summer.  We also explore the 34 

dynamics that contribute to the elevated skills at long lead times over Tibet and Taiwan-35 

Philippine regions following the initial state of phases 7 and 5, respectively.  The elevated skill is 36 

rooted in a wave train forced by the MJO convective heating over the Arabian Sea and 37 

feedbacks between MJO convection and SSTs in Taiwan-Philippine region.  Two out of the three 38 

commonly used MJO/BSISO indices tend to identify MJO events that evolve consistently in time, 39 

allowing them to serve as reliable predictors for subseasonal forecasts for up to five weeks.   40 

 41 

42 
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1. Introduction 43 

The Madden-Julian Oscillation (MJO) is one of the dominant modes of climate 44 

variability on subseasonal timescales in the tropics.  It is a planetary-scale convective 45 

anomaly consisting of an envelope of mesoscale convective systems coupled to large-46 

scale circulation disturbance with coherent eastward propagating wind and 47 

precipitation signals along the equator with a period of 30-90 days.  Over the broad 48 

tropical region, the MJO has two peak seasons with the strongest signals observed in 49 

boreal winter and second peak in boreal summer (Zhang and Dong 2004).  In summer, 50 

the MJO exhibits additional northward propagation when interacting with the monsoon 51 

system in Asia (Lau and Chan 1986; Chen et al., 1988; Lawrence and Webster 2002; Fu 52 

and Wang 2004a).  Because of this marked seasonality, in summer the MJO is also 53 

referred to the boreal summer intraseasonal oscillation (BSISO) (Straub and Kiladis 2003; 54 

Fu and Wang 2004a,b; Kikuchi et al. 2012; Li et al. 2017).   55 

The MJO impacts various weather and climate patterns across the globe.  For 56 

example, it modulates tropical cyclone (TC) activity in the Atlantic Ocean, the eastern 57 

North Pacific, the western North Pacific and the Indian Ocean (e.g., Klotzbath 2010, 58 

Maloney and Hartmann 2000, Li and Zhou 2013, Kikuchi and Wang 2010).  Over India, 59 

Australia as well as subtropical east Asia, it is found that the summer monsoon onset 60 

timing is often associated with certain phases of the MJO (Bhatla et al. 2017; Taraphdar 61 

et al. 2018; Wheeler and McBride 2005; Chi et al. 2015).  Furthermore, in Australia and 62 

Indian regions, active and break periods of summer monsoon rainfall are regulated by 63 

different phases of the MJO (Wheeler et al 2009; Evans et al. 2014; Pai et al. 2011).  64 

Convection anomalies associated with the MJO can influence weather and climate 65 

outside the tropics by forcing large-scale teleconnection patterns, such as the 66 

Pacific/North American pattern (PNA) (Mori and Watanabe 2008; Johnson and Feldstein 67 

2010; Tseng et al. 2019).  The thermal advection by the MJO-induced circulation 68 

anomalies plays a key role in modulating the surface temperature in the extratropics, 69 

including East Asia (Jeong et al. 2005 ; Yoo et al. 2012a ).  In summer, impacts of the 70 

MJO can also reach East Asia due to its northward propagation (e.g., Yasunari 1979; 71 

Wang et al. 2006; Chen et al. 2015).   72 

Because of its periodicity and relationships with a wide range of weather and climate 73 

phenomena, the MJO has been considered as a major source of predictability on 74 

subseasonal timescales.  There have been substantial advances in theoretical 75 

understanding and numerical simulation of this mode of variability.  Considerable 76 

efforts have been made to understand the multivariate structure of the MJO and its 77 

propagation in observations and in dynamical models.  Both climate research and 78 

forecasting communities hope that these developments may help to bridge the 79 

“predictability gap’’ between short-range deterministic weather forecasts and longer 80 

range probabilistic monthly and seasonal climate forecasts (Johnson et al. 2014).  The 81 
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challenge at these subseasonal timescales lies in overcoming the large error growth 82 

associated with the initial conditions and the short averaging time for slowly evolving 83 

climate signals to stand out clearly from the weather noise.   84 

In order to characterize the MJO structure and to monitor its evolution in real-time, 85 

several MJO indices have been defined and applied in operational settings to increase 86 

subseasonal forecast potential.  These indices include Wheeler and Hendon (2004) MJO 87 

index (WH MJO index hereafter), Kikuchi et al. (2012) bimodal tropical intraseasonal 88 

oscillation (ISO) index (Bimodal index hereafter), and Lee et al (2013) BSISO index (JYL 89 

BSISO index hereafter), Lin (2013) ISO index for the east Asia and western north Pacific 90 

(EAWNP) region (EAWNP ISO index hereafter) and Suhas et al (2013) Indian monsoon 91 

ISO index (Indian MISO index, hereafter).  The WH MJO index is defined by the first two 92 

principal component time series of the multivariate empirical orthogonal function (MV-93 

EOF) modes of the equatorial mean (between 15oS and 15oN) anomalous outgoing 94 

longwave radiation (OLR), and zonal winds at 850 hPa (U850) and 200 hPa (U200) 95 

(Wheeler and Hendon 2004).  The Bimodal index is constructed by projecting unfiltered 96 

OLR anomalies onto the dominant tropical (between 30oS and 30oN) ISO spatial patterns 97 

obtained by applying the extended EOF (EEOF) approach to 25-90-day bandpass filtered 98 

OLR data (Kikuchi et al. 2012).  Targeting Asia summer monsoon ISO, the JYL BSISO index 99 

is defined by the first two MV-EOF modes of anomalous OLR and U850 over Asia 100 

summer monsoon region (40oE-160oE, 10oS-40oN).  The EAWNP ISO index is based on 101 

the first two MV-EOF modes of zonally averaged OLR and U850 anomalies in the EAWNP 102 

domain (90oE-150oE 10oS-40oN), whereas the Indian MISO index is constructed applying 103 

EEOF on zonally averaged rainfall anomaly over the Indian summer monsoon domain 104 

(60.5oE-95.5oE, 12.5oS-30.5oN).  Note that the annual cycle as well as interannual and 105 

lower-frequency variabilities are removed from all five indices during the construction.   106 

Although these indices intend to capture the same basic phenomenon, none of the 107 

indices perfectly captures the MJO owing to the limitations of the statistical methods 108 

that define them.  No index captures the event-to-event differences in spatial structure, 109 

and all indices capture non-MJO variability to some extent.  However, the life cycle 110 

composites of the convective anomalies based on each of these indices unveil some 111 

robust features of MJO propagation in boreal summer (e.g., Fig. 8b in Kikuchi et al 112 

(2012), Fig. 9 in Lee et al (2012), Fig.10 in Lin (2013), and Fig. 10 Suhas et al (2013)).  In 113 

phase 1, enhanced convection appears in the equatorial central Indian Ocean.  During 114 

phases 2-4, the convection anomaly propagates northward into the Indian subcontinent 115 

as well as eastward into the Bay of Bengal and the Maritime Continent.  A northwest-116 

southeast tilted rainband from the northern Indian Ocean to equatorial Pacific begins to 117 

emerge in phase 4.  The eastern portion of the rainband intensifies as it reaches the 118 

South China Sea and the Philippine Sea in phases 5-6.  The northward propagation also 119 

becomes prominent in the western Pacific (phases 6-8).   120 
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Such a propagating nature makes the MJO impact on regional weather and climate 121 

predictability sensitive to its phases (e.g., Lin et al., 2010; Johnson et al., 2014).  The 122 

patterns of tropical convection associated with individual phases may preferentially 123 

influence particular regions remotely through teleconnection patterns or locally owing 124 

to its passage.  In addition, given the slow propagation of the MJO and the timescale of 125 

several days for the atmosphere to respond to the convective heating (Hoskins and 126 

Karoly 1981), the local impacts associated with MJO phases may persist for several 127 

weeks (Johnson et al. 2014; Riddle et al. 2013; Tseng et al. 2018).   128 

The discussion above suggests that indices monitoring the MJO in real-time may be 129 

useful for subseasonal forecast guidance.  In the U.S., the National Oceanic and 130 

Atmospheric Administration (NOAA) Climate Prediction Center (CPC) has developed 131 

statistical forecast guidance derived from Johnson et al. (2014) to inform their Week 3-4 132 

Outlooks, demonstrating the potential for statistical relationships rooted in the MJO, El 133 

Niño-Southern Oscillation (ENSO), and linear trend to enhance forecasts beyond two 134 

weeks.  For East Asian winter, a similar statistical approach is applied using atmospheric 135 

teleconnection patterns as predictors (Yoo et al. 2018).   136 

The present study addresses whether similar potential exists for East Asia summer.  137 

We develop a probabilistic forecast model determined through multiple linear 138 

regression (MLR) with the MJO, ENSO and linear trend as predictors for subseasonal 139 

temperature prediction.  Because there exist multiple MJO/BSISO indices for summer, 140 

we also perform a systematic evaluation of the three most widely used MJO/BSISO 141 

indices of our interest as predictors: the Bimodal (Kikuchi et al. 2012), WH (Wheeler and 142 

Hendon 2004), and JYL (Lee et al. 2013) indices.  We do not intend to inspect the fidelity 143 

of each of these MJO/BSISO indices in extracting the MJO signals nor do we attempt to 144 

investigate the strength and weakness of the individual index construction approach.  145 

Instead, we examine the lagged impacts of these three MJO/BSISO indices on East Asia 146 

extended summer (May – October) climate from 1982 to 2015.  The forecast skills of 147 

surface air temperature (T2m) are evaluated for each phase of the indices for lead times 148 

out to five weeks.  Throughout the article, we refer this dominant tropical 30-90 day ISO 149 

as MJO, unless the ISO indices are discussed, in which case, we refer to the index as 150 

MJO/BSISO.   151 

We introduce the datasets and methods used in this study in section 2.  We compare 152 

the forecast skill scores with different predictors as well as explore the dynamics that 153 

contribute to the elevated skills over various geographical regions in section 3.  In 154 

section 4, we summarize our findings and discuss their implications.   155 

 156 

2. Data and Methodology 157 

2.1 Data 158 
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For the MLR prediction model, we use observed, daily MJO/BSISO and ENSO indices 159 

for May – October and 1982-2015 as predictors.  As discussed in the introduction, we 160 

obtain three different MJO/BSISO indices: the Bimodal index (available at 161 

http://iprc.soest.hawaii.edu/users/kazuyosh/Bimodal_ISO.html), the JYL BSISO index 162 

(available at http://www.apcc21.org/eng/service/bsiso/moni/japcc030602.jsp), and the 163 

WH MJO index (available at  http://www.bom.gov.au/climate/mjo/).  For ENSO, we use 164 

daily SST anomalies averaged in the Niño 3.4 region (5°S - 5°N, 120° - 170°W) (Niño 3.4 165 

index hereafter) derived from NOAA Optimum Interpolation Sea Surface Temperature 166 

Version 2 (OISSTv2; Banzon et al. 2016) and obtained at a 0.25° spatial resolution.  For 167 

the Niño 3.4 index and all gridded data described subsequently, we determine 168 

anomalies by subtracting the first four harmonics of the 1982-2011 calendar day means. 169 

We use the following gridded datasets in this study, with their horizontal resolutions 170 

noted in parentheses.  For the atmospheric circulation fields, we use stream function at 171 

850 hPa (850) and 300 hPa (300) (1.5ox1.5o) derived from the Interim European Centre 172 

for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim; Dee et al. 173 

2011).  For tropical deep convection, we use daily OLR (2.5ox2.5o) from NOAA (Liebmann 174 

and Smith 1996) as well as pentad precipitation data (2.5ox2.5o) from the Global 175 

Precipitation Climatology Project (GPCP) version 2.2 (Adler et al. 2003; Huffman et al. 176 

2009).  The ERA-Interim daily 2-m air temperature (T2m) (1ox1o) serves as the 177 

predictand in the MLR forecast models.  For all analyses, we focus on a domain covering 178 

most of Southeast and East Asia, defined as 20°S-50°N, 60°-180°E.   179 

To examine forecast sensitivity to different T2m datasets, we use two additional 180 

datasets: the fifth generation of ECMWF reanalysis data (ERA5; Hersbach et al. 2020) 181 

and the NASA's Modern-Era Retrospective Analysis for Research and Applications, 182 

version 2 (MERRA2; Gelaro et al., 2017).  Both datasets are interpolated into the same 183 

horizontal and temporal resolutions as ERA-Interim T2m (1ox1o, daily).   184 

 185 

2.2 Method 186 

We generate weekly probabilistic T2m anomaly forecasts at each grid point through 187 

the following multiple linear regression (MLR) model for the time period of May-188 

October 1982-2015: 189 

++=+ bPaT
i

imim 0,,0     (1) 190 

In (1), T0+m represents the mean of the predicted T2m distribution at lead m, ai 191 

represents the regression coefficient for predictor, Pi, the subscript 0 indicates that the 192 

predictors are based on values at the initial time, b is the intercept term, and ε N(0, 193 

0+m) (see (2)) is a Gaussian residual.  In this study, the predictors include the MJO/BSISO 194 

index, the Niño 3.4 index, and time, t.  For each grid point we assume a Gaussian 195 

http://iprc.soest.hawaii.edu/users/kazuyosh/Bimodal_ISO.html
http://www.apcc21.org/eng/service/bsiso/moni/japcc030602.jsp
http://www.bom.gov.au/climate/mjo/
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distribution of the predicted T2m anomaly with the standard deviation that accounts for 196 

both error in the model and the future observation: 197 

0

1

0

2 )'('ˆ xXXxmo

−

+ =      (2) 198 

where 0+m is the predicted standard deviation, 2̂ is the mean square error, X is the 199 

predictor matrix, and x0 is the predictor values in column vector form.  The predictor 200 

matrix X is a T x 5 matrix, where T is the total number of daily observations in the 201 

training data and the 5 columns consist of a column of ones, the two MJO/BSISO index 202 

components, the Niño 3.4 index, and time. The predictor vector x0 consists of 1 and the 203 

four predictor values for the forecast. 204 

For verification purpose, a leave-one-year-out cross-validation approach is applied: 205 

the year n forecasts are made based on the statistics of data from all other years and 206 

then verified using the data of year n.  The weekly forecasts are initialized on each day 207 

from 1 May through 31 October for the years 1982-2015.  The forecasts are conducted 208 

for lead times of one to five weeks.  For example, for forecasts initialized on 1 May 1982, 209 

week one forecast covers the first week (2-8 May 1982) following the initialization day, 210 

week two forecast covers the second week (9-15 May 1982) following the initialization, 211 

and so on.   212 

We divide the forecasts into three categories with equal probabilities over the 1982-213 

2011 base period.  The three categories are: below normal, near normal and above 214 

normal, where “normal” is defined as the calendar week climatology of the base period.  215 

For the tercile boundaries, we first pool together five days of T2m anomalies centered 216 

on the forecast date from 1982 to 2011 and calculate the 33.33rd and 66.67th 217 

percentiles of these T2m anomalies.  “Below”, “near” and “above” normal temperatures 218 

are defined by the bottom, middle and top terciles of the climatological (base period) 219 

T2m distribution, respectively.   220 

We evaluate our forecasts using Heidke skill score (HSS), which measures the 221 

fraction of correct forecasts after excluding those being correct by chance.  For this 222 

measure, each probabilistic forecast is assigned to one of the three forecast categories 223 

based on the highest of the three forecast probabilities.  The HSS formula is then 224 

expressed as  225 

100
)(

)(


−

−
=

EA

EH
HSS      (3) 226 

where H represents the number of correct forecasts and E is the expected number of 
227 

correct forecasts by chance (one-third of the total number of forecasts, A).  The HSS 
228 

ranges in value from −50 (all incorrect forecasts) to 100 (all correct forecasts), and HSS 
229 

values greater than zero indicate skill relative to a random forecast. 
230 
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We also use the ranked probability skill score (RPSS) as a second measure of forecast 
231 

skill.  The RPSS explicitly accounts for the difference between the verified category and 
232 

probabilities for each of the three categories.  Specifically, RPSS is based on the sum of 
233 

squared differences between the components of the cumulative forecasts and 
234 

observations (the ranked probability score, or RPS).  If we express the forecast as a 
235 

three-element vector F with the ordered probabilities for each category, and similarly 
236 

the verified observations as a vector V with a component value of 1 for the verified 
237 

forecast category and 0 otherwise, then the RPS is expressed as  
238 

2
3

1 11

 
= ==














−=

i

i

j

j

i

j

j VFRPS
    (4) 

239 

The RPSS is then calculated as  240 

lim

1
cRPS

RPS
RPSS −=      (5) 241 

where angle brackets define a time average, and RPSclim is the RPS for a climatological 242 

forecast (33.3% for each category).  Therefore, RPSS values greater than 0 indicate skill 243 

relative to a climatological forecast.  These are two of the most commonly used metrics 244 

in operational forecast centers.  For example, in the NOAA CPC Verifications page 245 

(https://www.cpc.ncep.noaa.gov/products/verification/summary/), HSS and RPSS are 246 

the two metrics that are provided. 247 

We evaluate the statistical significance of the HSS frequencies through a Monte 248 

Carlo simulation approach.  For each simulation, we randomly reshuffle both forecast 249 

and verified years and then generate resampled forecast and verification data with the 250 

reshuffled years. We then calculate the HSS of the resampled forecast/verification data 251 

pair in the same way as with the true forecasts and verification.  We repeat these 252 

simulations 1000 times and calculate the 95th percentiles of the synthetic scores.  The 253 

HSS is considered statistically significant at the 5% level (one-tailed test) if it exceeds the 254 

95th percentile of the synthetic scores at that grid point.  These calculations are made 255 

only for the first forecast lead, given the computational expense and the expectation 256 

that the threshold for significance should not depend on lead time.   257 

 258 

3. Results 259 

The full forecasts determined through our MLR model incorporate information of 260 

the MJO, ENSO, and long-term trend.  To evaluate the overall forecast performance 261 

contributed by these potential sources, we first examine the mean HSS map for all the 262 

forecast days for the extended summer (May-October) during 1982-2015 over the East 263 

Asia Domain.  Figure 1 is obtained by averaging the skill across three sets of forecasts 264 

with different MJO/BSISO indices.  Each of the MJO/BSISO indices yields similar general 265 
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patterns of skill but with some notable differences that we discuss more thoroughly 266 

below.  The variability in skill among the three indices is much smaller than the average 267 

skill (not shown), indicating that the results are robust to the choice of index (Figs 268 

1a,c,e).  Substantial skills (HSS > 15) persist through at least week 5 over the tropical 269 

band (10o), northwestern Indochina peninsula, including Bangladesh, Bhutan, 270 

northeastern India and Myanmar (15oN-30oN, 90oE-100oE), and the region extending 271 

southeast from the Maritime Continent, including the Solomon Islands and Fiji.  Figures 272 

1b,d,f show the mean RPSS.  Comparison between the left and right halves of Figure 1 273 

reveals that both metrics produce consistent patterns, indicating that interpretations 274 

are not sensitive to evaluation method.  The persistence of elevated skill through week 275 

5 in some regions indicates the importance of low-frequency sources of skill, such as 276 

ENSO or long-term trend, but the higher-frequency MJO also is an important source of 277 

skill within parts of East Asian domain, as discussed in Section 3.2. 278 

 279 

3.1 Forecast Evaluation 280 

In the following, we examine the forecast skills contributed by each predictor.  These 281 

contributions are determined by calculating the skill in the MLR model that excludes the 282 

target predictor from that of the full MLR model.  In Figure 2 we explore ENSO and the 283 

linear trend influences.  Because both ENSO and the linear trend evolve slowly, their 284 

related skills do not change much with increasing lead times on subseasonal timescales 285 

(not shown).  We therefore focus only on one lead, week one.  Figure 2a shows the map 286 

of HSS difference (HSS) between forecasts with and without the ENSO predictor.  The 287 

influence of ENSO is weak except in the tropical region, especially south of the equator.  288 

The tropical band of relatively high skill (HSS > 3) is colocated with the substantially 289 

negative T2m regressions on the Niño 3.4 index (< −0.1oC) (Fig. 2c).  This result suggests 290 

that ENSO has a weak influence on East Asian temperature in the boreal summer, which 291 

is consistent with earlier studies on ENSO impacts (e.g. Halpert and Ropelewski 1992).   292 

The linear trend of T2m shows warming signal throughout much of the East Asian 293 

domain (Fig. 2d).  The uniformity of sign and the enhanced warming of land relative to 294 

ocean is consistent with the impact of increasing greenhouse gases.  The existence of 295 

substantial spatial heterogeneity relative to the more uniform radiative forcing likely 296 

owes to the influence of internal climate variability in the short observational record or 297 

to uncertainties in the data record.  To explore the latter source, we show in Figure 3 298 

the HSS maps of the full T2m forecasts using ERA5 (Fig. 3a) and MERRA (Fig 3b) relative 299 

to that of ERA-Interim for week one.  The regions of insignificant HSS in the ERA-Interim-300 

derived forecasts are masked out.  Regions of large difference ( HSS > 10) are seen 301 

over the tropical band east of 150oE, northwestern Indochina peninsula, southern Indian 302 

Ocean and mid-latitude East Asia, indicating sensitivity to T2m dataset. The differences 303 
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between MERRA- and ERA-Interim-derived forecasts are particularly pronounced (Fig 304 

3b). This analysis reveals sensitivity to the choice of T2m dataset, but the results are 305 

robust for the regions and patterns discussed in the remainder of this study.   306 

The high skill (HSS > 10) regions revealed in the HSS map between forecasts with 307 

and without the linear trend predictor include those identified by the full forecast result 308 

in Figure 1: the tropical band, northwestern Indochina peninsula and southeast 309 

extension from the Maritime Continent.  We also see an additional high skill region 310 

contributed by the trend predictor over the mid-latitude East Asia (90oE-120oE) (see Fig. 311 

2d).  Most notable for the purpose of this study, the influence of the trend (that is 312 

linearly independent of all other predictors) provides substantial summertime skill over 313 

broad regions of East Asia.  The strong skill even on subseasonal timescales in some 314 

regions likely is the result of the trend signal standing out more cleanly above the noise 315 

of random weather variability in the summertime than in other seasons, when 316 

midlatitude dynamics are more vigorous.  These findings do not change if we extend the 317 

period of analysis to 2018, which would add the extreme El Niño of 2015-16 and 318 

subsequent post-global warming “hiatus” period (not shown).   319 

 320 

3.2 MJO/BSISO Index Comparison 321 

We now examine the impacts of MJO on subseasonal forecast skill and the 322 

difference caused by the choice of MJO/BSISO indices.  Figure 4 shows the HSS map 323 

between forecasts with and without MJO/BSISO indices for all three indices for both 324 

short (week 1) and long (skill averaged over weeks 3-4) lead times.  A dominant zonal 325 

band of enhanced skill (HSS > 6) is seen along the equator from the Indian subcontinent 326 

to the Maritime Continent, with even higher skill (HSS > 9) over the tropical oceanic 327 

regions (Figs. 4a,c,e).  It is robust for both short (week 1) and long (weeks 3-4) lead 328 

times (Figs. 4b,d) except for JYL BSISO index for weeks 3-4 (Fig. 4f).  Upon close 329 

inspection, another zonal band of enhanced skill (HSS > 3) can be seen outside the 330 

tropics from Tibetan Plateau stretching southeastward to Taiwan-Philippine region for 331 

week 1 (Figs. 4a,c,e).  The skill of this band reemerges at the long lead time for the 332 

Bimodal and WH MJO indices (Figs. 4b,d).  The distinct geographical locations of the two 333 

zonal bands suggest two pathways for the enhanced skills contributed by the MJO.  The 334 

tropical band is colocated with the main action centers of the MJO convective 335 

anomalies, and so it likely represents a direct response to the MJO tropical dynamics.  336 

The fact that the highest skill is over the oceanic regions in the tropical band reflects 337 

that the tropical response is strongly contributed by SST anomalies produced during 338 

MJO events, as discussed in previous studies (e.g. Maloney and Kiehl 2002; Gao et al 339 

2019).  The extratropical band, on the other hand, is separate from the MJO action 340 
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centers, and likely represents a more indirect teleconnection in response to the 341 

circulation anomalies excited by the MJO convection. 342 

After comparing individual indices, we also consider the performance of the 343 

ensemble mean forecasts relative to that of each individual model.  We calculate the 344 

ensemble mean by averaging the probabilities among the three models that differ only 345 

in choice of MJO index.  Figure 5 shows the HSS map between the ensemble mean 346 

performance and that of individual models, including bimodal (top), WH (middle) and 347 

JYL (bottom), respectively.  It is seen that the ensemble forecast only performs 348 

noticeably better than the JYL model (Fig 5c) but not better than the WH (Fig 5b) or 349 

bimodal models (Fig 5a).  Hence there is no clear advantage to using a multimodel 350 

ensemble for this particular statistical forecast model. 351 

For the purpose of our study, the extratropical band is of particular interest because 352 

not only it is located in East Asia but also the elevated forecast skill brought about by 353 

the MJO is seen for both short and long lead times, although the skill decays more 354 

quickly for the JYL index than for the other two.  In addition, these two regions are also 355 

among those least sensitive to the choice of datasets ( HSS < 5, Fig 3).  In the following 356 

we explore the regional MJO-related skill variations with respect to fo recast lead times 357 

and the associated dynamics with the focus on the two areas in the extratropical band: 358 

(1) Tibetan Plateau (90oE-100oE, 26oN-32oN), and (2) Taiwan-Philippine region (117oE-359 

132oE, 16oN-25oN) (marked by the green boxes in Figure 4). 360 

The line plots in Figure 6 show the mean HSS averaged over Tibetan and Taiwan-361 

Philippine boxes for forecasts using three different MJO/BSISO indices with respect to 362 

lead times (color lines).  For comparison, the regional box-averaged mean HSS for 363 

forecasts without MJO/BSISO is also included (dashed line).  The HSS curve of no-364 

MJO/BSISO exhibits the lowest values throughout the forecast time period: HSS < 7 (Fig. 365 

6a) and HSS  0 (Fig. 6b) in Tibet and Taiwan-Philippine regions, respectively.  The 366 

dominant contribution of the MJO/BSISO to the forecast skills in these regions is 367 

apparent from the distance between the color and dashed lines.   368 

In general, the skill score that includes MJO as predictor decreases as lead time 369 

increases (Fig. 6).  However, close inspection of the three HSS curves of different 370 

MJO/BSISO predictors reveals notable differences.  The skill score of JYL BSISO curve 371 

drops more rapidly than the other two curves in both regions (red curve in Figs. 6a-b).  372 

Another two notable differences in Figure 6 are the gentle decrease of Bimodal index in 373 

the Tibet region from week 2 to week 4 (blue curve in Fig. 6a) and WH MJO skill 374 

reemergence at week 2 in Taiwan-Philippine region (green curve in Fig. 6b).  These 375 

results suggest that potentially useful skill persists for several weeks at these two 376 

locations, but the level of skill provided by the statistical forecast guidance may be 377 

sensitive to the choice of MJO/BSISO index. 378 
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 379 

3.3 Contributing Mechanisms 380 

Next, we investigate individual MJO phases that contribute to the elevated skills at 381 

longer lead times and the associated dynamics in Tibet and Taiwan-Philippine regions.  382 

We inspect the regional box-averaged HSS variation with lead time for each phase of the 383 

MJO/BSISO.  Inspection of the HSS curves for each MJO/BSISO phase (not shown) 384 

reveals phase-dependent skill enhancement beyond week 2, suggesting windows of 385 

opportunity for skillful weeks 3-5 forecasts for certain initial MJO/BSISO phases.  For the 386 

Tibet region, these windows of opportunity correspond with initial phases 7 and 8, as 387 

we see HSS values exceeding 15 with the Bimodal index predictor at lead times of 3-4 388 

weeks (blue curves in Figs. 7a-b).  In Taiwan-Philippine region, these windows of 389 

opportunity are associated with phases 5 and 6 at lead times of 2-4 weeks based on 390 

Bimodal and WH MJO indices, respectively (blue and green curves in Figs. 9a-b).   391 

To understand the mechanisms responsible for such skill reemergence, we examine 392 

the event evolution after the initial state of these phases through lagged composite 393 

analysis.  We calculate composites following the Bimodal index phase 7 (5) for Tibet 394 

(Taiwan-Philippine) region by averaging 370 (391) days when the amplitude of the 395 

MJO/BSISO phase is greater than 1.  Figures 7c-h and 8a-c show the 7-day composite 396 

anomalies of T2m, OLR and 300 hPa stream function (300) for initial state of phase 7 397 

and for lags of zero to five weeks based on the Bimodal index.  It is seen that three 398 

weeks after the initial state of phase 7 at lag 0 (Fig. 7c) the composite MJO anomalies 399 

flip sign with cold T2m and negative OLR anomalies dominating tropical Indian Ocean 400 

and south Bay of Bengal (Fig. 7f).  An area of enhanced cold T2m anomaly (< -0.4oC) 401 

appears over the Tibet region in week 4 (Fig 7g) and lasts for two weeks (Fig 7h).  In the 402 

dynamical field, as the convective anomaly moves to the Arabian Sea at lag 4, it forces 403 

an upper-level wave train pattern to the northeast and extending to Japan (Fig 8b).  We 404 

see that a pair of circulation anomalies embedded in the wave train, with anticyclonic 405 

anomaly over the Indian subcontinent and cyclonic anomaly over the central-eastern 406 

parts of China, advects cold air from the north to the Tibet region (Fig. 7g, Fig. 8b).  The 407 

cold T2m anomaly intensifies and persists for two weeks (Fig. 7h), reflecting in the 408 

elevated skill at weeks 4 and 5 in Figure 7a (blue curve).  The lagged composite maps for 409 

phase 8 are similar to those of phase 7 (not shown). 410 

We repeat the same composite analysis for the Bimodal index phase 5 to target the 411 

sources of elevated skill in the Taiwan-Philippine region (Fig. 9).  As seen at the initial 412 

time and persisting through the second week, a northwest-southeast tilted band of 413 

negative OLR and T2m stretches from the Indian subcontinent through the Bay of 414 

Bengal and southern part of the South China Sea to the western tropical Pacific (Figs. 9c-415 

d).  The convective band, though much weaker, reaches Taiwan-Philippine region by 416 
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week 3 (Fig. 9f).  The enhanced convection (negative OLR anomalies in Fig. 9f and 417 

positive precipitation anomalies in Fig. 10c) over this maritime region may contribute to 418 

T2m cooling through its influence on SST, including reduced shortwave radiation into 419 

the ocean due to cloudiness and enhanced latent heat flux out of the ocean through 420 

wind anomalies (DeMott et al. 2015; Gao et al. 2019).  It can also contribute to cold T2m 421 

anomalies through cold advection associated with cyclonic circulation anomaly, 422 

indicated by the negative 850 centered northeast of the region (Fig. 10c).  Ultimately, 423 

the MJO-induced convective anomaly leads to a prolonged imprint on the regional T2m 424 

anomaly pattern at weeks 3 and 4, as seen in yellow box region in Figures 9f-g, even 425 

after the convective band dissipates by week 4 (Figs. 9g, 10d).  The window of forecast 426 

opportunity brought about by this sequence of events is clearly seen at weeks 3-4 in 427 

Figure 9a (blue curve).  The lagged composite maps for WH MJO phase 6 produce a 428 

similar sequence and yield the same interpretation (not shown). 429 

 430 

4. Discussion and Conclusion 431 

The MJO has been considered an important climate mode of variability on 432 

subseasonal timescales for East Asian summer.  Several indices have been constructed 433 

to monitor the MJO in real time, but it is unclear how well they serve as guidance for 434 

subseasonal forecasts.  Our study systematically evaluates the lagged surface air 435 

temperature impacts of the three MJO/BSISO indices commonly used in operational 436 

settings.  We identify the regions and MJO initial states where inclusion of MJO 437 

information provides windows of opportunity for skillful forecasts at lead times 438 

extending beyond the timescale of traditional weather forecasts. We then examine 439 

lagged composites corresponding with these MJO initial phases over selected regions of 440 

interest to decipher the sources of elevated skill at these subseasonal lead times. 441 

Overall, our study indicates the potential to develop skillful subseasonal forecast 442 

guidance over some regions of East Asia in boreal summer with the use of a linear 443 

statistical model.  Most previous studies have focused on the boreal winter (e.g., 444 

Johnson et al. 2014; Yoo et al. 2018), when Northern Hemisphere tropical-extratropical 445 

midlatitude interactions are strongest and the potential for extended-range skill rooted 446 

in the tropics appears to be highest.  However, in boreal summer, the influence of the 447 

MJO combined with the long-term warming trend is also strong and persistent enough 448 

to provide a reliable source of subseasonal forecast skill, at least in some regions and for 449 

some initial phases of the MJO.   450 

Our study offers an objective approach to tease out relevant predictors and the 451 

resulting windows of opportunity at subseasonal lead times.  For instance, in our study, 452 

we examine forecast skills associated with each phase of the observed MJO and find 453 

that the contribution from individual phases varies.  Such an approach can be applied to 454 
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forecast model data as well to examine model biases and performance.  For example, a 455 

model may score high at certain phases of MJO but low at others.  The difference may 456 

help identify the essential physical processes that are not simulated or understood 457 

previously.   458 

We also provide a systematic evaluation of three commonly used, real-time 459 

MJO/BSISO indices from the perspective of lagged temperature impacts over East Asia.  460 

Although the three indices intend to extract similar MJO signals, the differences in how 461 

they are defined result in distinct lagged temperature impacts over East Asia, as 462 

indicated by differences in forecast skills when used as predictors in the statistical 463 

forecast model.  For the purpose of subseasonal prediction, it is desirable to choose an 464 

index that captures longer-lasting organized signals in order to achieve higher skills for 465 

longer lead times.  As seen in Figure 4, the pattern of skills provided by JYL BSISO 466 

predictor disintegrates by weeks 3-4 (Fig. 4f), whereas those associated with the 467 

Bimodal and WH MJO predictors remain organized (Figs. 4d-e).  Furthermore, the mean 468 

HSS of JYL BSISO index over the regions of our interest declines more rapidly than other 469 

two indices (Fig. 6).   470 

A recent study alluded to the limited applicability of the JYL index for subseasonal 471 

forecast guidance.  They find that the JYL index shows standing wave characteristics 472 

with little propagation (Wang et al. 2018).  To further understand the nature of this 473 

distinction, we explore the ability of each index to track strong MJO events with a well-474 

defined timescale.  Though varying from event to event, the transition between each 475 

phase on average is about 5-7 days during an MJO (Wheeler and Hendon 2004; Kikuchi 476 

et al 2012).  With data of weekly temporal resolution, one would expect the fields to 477 

resemble phase 2 one week after the onset of phase 1.  Likewise, phase 3 would emerge 478 

two weeks after phase 1 onset, and so on.  We calculate the pattern correlation () 479 

between OLR composite of each phase and the corresponding lagged composites with 480 

respect to phase 1 for all three MJO indices to examine how well a specific index tracks 481 

consistently evolving MJO events.  Figure 11 shows such a comparison between phase 3 482 

and lag 2 composite of phase 1 for bimodal (top), WH (middle), and JYL (bottom) 483 

indices.  The similarities between phase 3 (left column) and its respective lagged 484 

composite of phase 1 (right column) are indicated by the pattern correlation 485 

coefficients: 0.94, 0.80, and 0.55 for bimodal, WH, and JYL indices, respectively.  Figure 486 

12 summarizes the decrease in pattern correlation for each index with respect to 487 

time/phase; that is, declining in the ability of each index to track the MJO as it 488 

propagates.  It is seen that the bimodal and WH indices are able to track relatively 489 

closely the MJO for five weeks (  0.7), whereas  for JYL index drops sharply after one 490 

week ( 0.55). These findings indicate that the bimodal and WH indices tend to identify 491 

events that evolve rather consistently in time, allowing them to serve as reliable 492 

predictors for subseasonal forecasts for up to five weeks.   493 
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Such a distinction may be caused by the different domain selection for the index 494 

construction.  As pointed out in the introduction, JYL BSISO index targets the Asia 495 

summer monsoon ISO and the domain is confined to the Asia longitudes (40oE—160oE), 496 

instead of the circumglobal domain like Bimodal and WH MJO indices.  It is also worth 497 

mentioning that besides filtering out the interannual and other lower frequency signals, 498 

in the Bimodal and WH MJO cases, additional spatial filtering procedures are applied 499 

prior to construction of real-time indices.  The WH index is based on the equatorial 500 

mean (averaged between 15oS and 15oN) variables whereas the Bimodal index is 501 

constructed through projection onto the spatial MJO pattern of 25-90-day bandpass 502 

filtered data (see Introduction for details).  By focusing on the large-scale coherent 503 

spatial structure of convection and circulation associated with the MJO, higher 504 

frequency variability is removed without employing conventional time filters (Kikuchi et 505 

al. 2012).  This spatial filtering effect may also be a potential contributor to the marked 506 

difference between JYL BSISO index and the other two indices.  Lastly, for the focus of 507 

our study, Bimodal index achieves overall higher scores in our evaluation for 508 

subseasonal T2m forecast in East Asia summer.  It is likely because of the EEOF approach 509 

and exclusion of 10-20 day bi-weekly Rossby waves during its construction.  The EEOF 510 

approach tends to pick out persistent MJO events, and the 10-20 day bi-weekly Rossby 511 

wave is another dominant subseasonal oscillation in East Asia (Kikuchi et al. 2012; Li and 512 

Zhou 2013).   513 

The mechanisms by which the MJO contributes to subseasonal forecast skill remain 514 

an active area of investigation.  Recent studies identify the sources of skill for 515 

extratropics associated with consistent teleconnection patterns forced by certain phases 516 

of the MJO over the Indian Ocean and western Pacific (Seo and Lee 2017; Tseng et al. 517 

2019).  On the other hand, phase-dependent MJO-driven inertio-gravity waves are 518 

found to degrade forecast skill in the extratropics (Rodwell et al. 2013; Franzke et al. 519 

2019).  Forecast errors in the MJO extratropical response may arise due to failure to 520 

consider the evolution of the MJO (Yadav and Straus 2017; Goss and Feldstein 2018) and 521 

the extratropical base states (Goss & Feldstein, 2015; Henderson et al., 2017).  Our 522 

statistical forecast model only accounts for the initial state of the MJO/BSISO and not 523 

the detailed information of an MJO/BSISO, such as propagation speed and evolution, 524 

which can vary from event to event.  Accounting for prior MJO evolution may offer little 525 

benefit because some evidence suggests that the extratropical response is insensitive to 526 

the MJO propagation speed (Goss and Feldstein 2018), and so the initial MJO state may 527 

provide sufficient information on the MJO convective forcing.  Nevertheless, accurate 528 

information on the future evolution of the MJO likely would be beneficial (Zhang and 529 

Chang 2019), given that state-of-the-art dynamical forecast models can skillfully predict 530 

the summertime MJO out to 2-3 weeks (Lee et al. 2015; Fang et al. 2019).  There are, 531 
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however, additional sources of uncertainty such as synoptic-scale eddies that may 532 

degrade our model performance.   533 

Given the relatively modest MJO-induced temperature impacts in tropical oceanic 534 

regions (O(0.1oC), Fig. 9), extensions of this model to other variables that show stronger 535 

signals associated with the MJO such as precipitation may yield even greater benefits.  536 

Finally, while there are windows of opportunity for enhanced subseasonal forecast skill 537 

when certain phases of MJO are active, MJO is inactive a large fraction of the time.  538 

There might be other sources of skill during the inactive phases of MJO.  Future work 539 

may explore other mechanisms and indices to improve subseasonal statistical forecasts 540 

that may serve as operational guidance.   541 

 542 
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 713 

Figure 1. Average T2m forecast performance of the MLR forecast model.  The May – 714 

October 1982-2015 mean (left) HSS and (right) RPSS for (a,b) week 1, (c,d) week 3, and 715 

(e,f) week 5 forecasts.  The set of the maps is average of the three sets of forecasts using 716 

(a) Week 1 

HSS map RPSS map 
(b) Week 1 

(c) Week 3 (d) Week 3 

(e) Week 5 (f) Week 5 
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three different MJO/BSISO indices.  Areas of stippling indicate that the HSS is significant 717 

at the 5% level.   718 

 719 

720 
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 721 

Figure 2. ENSO and linear trend contributions to T2m forecast skill.  Week 1 HSS 722 

differences between the full prediction model and models that exclude (a) ENSO and (b) 723 

linear trend.  Regression coefficients for T2m anomalies regressed on (c) the Niño 3.4 724 

index (°C °C-1) and (d) time (linear trend) (°C [30yr]-1). 725 

 726 

 727 
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 729 

Figure 3. Sensitivity of T2m forecast skill to dataset. ΔHSS maps of the full forecasts 730 

using (a) ERA5 and (b) MERRA relative to that of ERA-Interim for week one.  The red 731 

boxes mark the Tibet and Taiwan-Philippine regions (see section 3.2). 732 
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 735 

Figure 4. Sensitivity of T2m forecast skill to MJO/BSISO index. ΔHSS for forecasts with 736 

and without the (top) Bimodal, (middle) WH MJO, and (bottom) JYL MJO/BSISO index 737 

predictors.  Left panels are for week 1 forecasts and right panels are for ΔHSS averaged 738 

Week 1 Week 3-4 

(a) (b) 

(c) (d) 

(e) (f) 
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for weeks 3 and 4 forecasts.  The green boxes in (a) mark the Tibet and Taiwan-739 

Philippine regions (see section 3.2). 740 

741 
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 742 

Figure 5.  ΔHSS for week 1 T2m forecasts between three-model ensemble mean and (a) 743 

Bimodal, (b) WH, and (c) JYL indices.   744 

 745 

746 
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 747 

Figure 6. Average T2m forecast skill in the Taiwan-Philippines (Tw-Ph) and Tibet regions 748 

with different MJO/BSISO predictors.  Mean HSS (y-axis) averaged over the (a) Tw-Ph 749 

and (b) Tibet regions as function of lead time (x-axis, in weeks), with the Bimodal (blue), 750 

WH MJO (green), and JYL (magenta) indices used as predictors.  The dashed black line 751 

indicates the mean skill for forecasts with the MJO/BSISO index excluded as a predictor.  752 

The two regions are defined by green boxes in Fig. 3.   753 
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 758 

Figure 7. Windows of subseasonal T2m forecast opportunity in Tibet region following 759 

MJO/BSISO phases 7 and 8.  Mean May-October HSS over the Tibet region (see orange 760 

box in panels g and h) for weeks 1-5 (x-axis) following MJO/BSISO phase (a) 7 and (b) 8 761 

for forecasts that use the Bimodal index predictor (blue), WH MJO index predictor 762 

(green), and JYL BSISO index predictor (magenta). (c-h) Week 0 through week 5 763 

composite anomalies of T2m (color shading, °C) and OLR (color contours with a 764 

minimum magnitude of 5 for both positive (red) and negative (blue) values; interval = 5 765 

Wm-2), following Bimodal index phase 7. Areas of stippling indicate that the HSS is 766 

significant at the 5% level.   767 
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 770 

Figure 8.  Composite anomalies of 300 hPa streamfunction (color, 10–6 s–1) and OLR 771 

(contour, interval = 5 Wm-2) following Bimodal index phase 7 for (a) week 3, (b) week 4, 772 

and (c) week 5.  The blue box in (b) & (c) denote the Tibet region.   773 
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 776 

Figure 9.  Windows of subseasonal T2m forecast opportunity in Taiwan-Philippine region 777 

following MJO/BSISO phases 5 and 6. (a,b) As in Fig. 7 but for the Taiwan-Philippine 778 

region (orange box in panels f and g) and following MJO/BSISO phase 5 and 6, 779 

respectively. (c-h) Week 0 through week 5 composite anomalies of T2m (color shading, 780 

°C) and OLR (contours; interval = 4 Wm-2) following Bimodal index phase 5.  Areas of 781 

stippling indicate that the HSS is significant at the 5% level.   782 
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 785 

Figure 10.  Composites anomalies of precipitation (color shading; mm day-1) and 850 hPa 786 

streamfunction (contours, interval = 0.5 10–6 s–1) in Taiwan-Philippine region following 787 

Bimodal index phase 5 (a-d) week 1 through week 4.   788 
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 791 

Figure 11.  OLR composite for (left) MJO/BSISO phase 3 and (right) lag 2 (averaged 8-14 792 

days after the onset of phase 1) with respect to phase 1 for each index: (top) Bimodal, 793 

(middle) WH, and (bottom) JYL index.  The pattern correlation coefficients are noted 794 

underneath the respective indices on the left.  Lags are in weeks.   795 
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 798 

 799 

Figure 12.  Pattern correlation coefficient between the MJO/BSISO OLR composite 800 

sorted by phase (indicated by red x-axis) and lagged OLR composite with respect to 801 

phase 1 onset (with lag indicated by the black x-axis) for each index: Bimodal (blue), WH 802 

(green) and JYL (magenta) index.  Lags are in weeks.   803 

 804 

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

lag (week)

c
o
rr

Bimodal

WH

JYL

-0.2

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8phase

c
o
rr


	Evaluation of subseasonal impacts of the MJO/BSISO in the East Asian extended summer
	Abstract
	1. Introduction
	2. Data and Methodology
	3. Results
	4. Discussion and Conclusion
	References
	References



